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Introduction: Groups as Random Objects

Conjecture (Cohen-Lenstra, 1984)
As K ranges through imaginary quadratic fields, ordered by
discriminant,

IP(ClK [p∞] ∼= G) ∝ 1
|Aut(G)|
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Random Abelian Groups from Random Matrices

Theorem (Friedman-Washington, 1989)
Suppose the coefficients of MN,N are independent Haar distributed
random variables in Zp. As N → ∞, we get a limiting probability
distribution on finite abelian p-groups that satisfies

IP(G) ∝ 1
|Aut(G)|

Theorem (Maples, 2013; Wood, 2015)
Suppose the coefficients of MN,N are non-degenerate identically
distributed random variables a. Then the same conclusion holds.

aDegenerate: constant modulo p
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Illustration

Example (A Bernoulli random matrix - ”White Noise”)

0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0 0 1
0 1 1 1 0 1 1 0 0 1 1
0 1 0 0 0 1 1 1 1 1 0
1 1 1 1 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 1 1 1
1 0 0 1 0 1 0 0 1 0 1
1 0 1 1 0 0 0 0 1 0 0
1 0 1 0 1 0 0 1 1 1 0
0 0 0 0 0 1 1 0 0 1 1
1 1 1 1 0 0 0 1 0 0 1


Entries are 0 or 1 with probability 1/2.
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Cokernels of Corners

Example 

m11 m12 m13 m14 m15
m21 m22 m23 m24 m25
m31 m32 m33 m34 m35 . . .
m41 m42 m43 m44 m45
m51 m52 m53 m54 m55

...


Definition
Denote by MHaar

n,n the top left n × n corner of a large (or infinite)
matrix whose entries are independent, Haar random variables.

Hence,
coker(MHaar

n,n )

is a random process on finite abelian p-groups.
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Markov Chain

Theorem (Van Peski, L.)

coker(MHaar
n,n )

is a Markov chain.

Example

Z/2Z
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Markov Chain

Theorem (Van Peski, L.)

coker(MHaar
n,n )

is a Markov chain.

Example

Z/2Z

Theorem

coker(MBernoulli
n,n )

is ”asymptotically” a Markov chain.
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Definitions; Description of Markov Chain

Definition
• X0 denotes the set of finite abelian p-groups G.

• X1 denotes the set of abelian p-groups H such that
H ∼= Htors × Zp.

Two Random Operators

• d : X1 → X0:
take quotient by random element

• d∗ : X0 → X1:
pick random element of Ext( · ,Zp)

a

aFor G finite, Ext(G,Zp) is dual to G.
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Connection with Random Matrices

d
(

coker(Mn,n+1)
)
=

 Mn,n+1

∗ . . . ∗


(Quotient by a random element)

d∗
(

coker(Mn,n)
)
=

 ∗

Mn,n
...
∗


(Random Zp-extension)

dd∗
(

coker(Mn,n)
)
=


∗

Mn,n
...
∗

∗ . . . ∗ ∗
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Time-Reversible Markov Chains

Definition
Given a Markov Chain at equilibrium, time-reversal gives another
Markov chain:

IP∗(A → B) =
IP(B)IP(B → A)

IP(A)

Definition
A Markov chain is time-reversible if

IP(A)IP(A → B) = IP(B)IP(B → A) (1.1)

Reminder
Any time-reversible Markov chain can be represented as a symmetric
random walk on a weighted graph.
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(d ,d∗) is Time-Reversible

Observation
For any GLn+1(Zp)-invariant measure Mn,n+1,

coker

 Mn,n+1

0 0 . . . 0 1

 ≈ coker

 Mn,n+1

∗ ∗ . . . ∗ ∗



Corollary
(d∗,d) is a time-reversible Markov chain.(

coker(MHaar
n,n )

∣∣∣ coker(MHaar
n,n+1) = H

)
≈(

coker(MHaar
n+1,n+1)

∣∣∣ coker(MHaar
n,n+1) = H

)
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Interpretation as a Random Walk

The weighted graph Γ

(d∗,d)

is a random walk on a bipartite weighted graph Γ with:
• Vertices labeled by G or H.

• Edges:
0 → Zp → H → G → 0

• Weights:
1

|Aut(Zp → H → G)||G|

We get dd∗ by taking two random steps on this weighted graph.
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The Spectrum of Γ

Remark
The spectrum of Γ can be deduced from the spectrum of dd∗.

Theorem
The spectrum of dd∗ is the closure of{

1
|G|

}

Theorem
There exists an explicit unitary operator U such that:

U−1dd∗U =
1
|G|
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The Unitary Operator U

Theorem (Van Peski, L.)
There exists a unitary operator U such that:

U
(
|Sur(F , · )|
|Aut( · )|

)
=

√
c0

(
|Sur( · ,F )|
|Aut( · )|

)

Caveat
U may not be surjective, but...

Theorem

im(U) = im(dd∗)
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The Unitary Operator U , cont’d

Theorem (Van Peski, L.)

c0
∑

G

|Sur(G,F1)||Sur(G,F2)|
|Aut(G)|

=

∑
G

|Sur(F1,G)||Sur(F2,G)|
|Aut(G)|

∀F1,F2

Example
Substituting F2 = 0 yields the well-known identity:

c0
∑

G

|Sur(G,F1)|
|Aut(G)|

= 1 ∀F1.
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Thank you!



Eigenfunctions

Corollary
• To every F ∈ X0, we can associate an eigenfunction of dd∗:

EF
def
== U(1F )

• The eigenvalue of EF is |F |−1.
• We can calculate EF explicitly.
• The EF are independent and they span a dense subset of

ker(dd∗)⊥ = im(dd∗).
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Proofs
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Proof of First Main Theorem

Definition

M(F )
def
== µ0( · )|Sur( · ,F )| = c0

|Sur( · ,F )|
|Aut( · )|

Lemma (Main Lemma)

dd∗
(

M(F )
)
=

1
|F |

∑
Hom(Zp ,F )

M
(

coker(Zp → F )
)
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Proof of First Main Theorem (cont’d)

Corollary

dd∗U(1F ) =
1
|F |

U(1F )

Proof.

dd∗M(F ) =
1
|F |

M(F ) + lower order terms ...

⇒

dd∗U(1F ) =
1
|F |

U(1F ) + lower order terms ...

⇒

dd∗U(1F ) =
1
|F |

U(1F )
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Proof.
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|F |
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with respect to the partial ordering, where F ′ ≤ F iff F ′ is a
quotient of F .

⇒
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Proof of Second Main Theorem

Theorem
The orthogonal complement of the EF in L2(X0, µ0) is
ker(dd∗) ∩ L2(X0, µ0).

Proof.
We compute the asymptotics of (dd∗)N(ν) where ν is finitely
supported.

Lemma
The dominant term of (dd∗)N(ν) is a linear combination of the M(F )’s.
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”Application”

For all G,
|Aut(G × Z/pZ)|

|Aut(G)|
=

=
1
p

(
|Hom(G × Z/pZ,Z/pZ× Z/pZ)| − |Hom(G × Z/pZ,Z/p2Z)|

)
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Thank you!


