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Introduction: Groups as Random Objects

Conjecture (Cohen-Lenstra, 1984)

As K ranges through imaginary quadratic fields, ordered by
discriminant,

P(Cl[p™] = G) m
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Random Abelian Groups from Random Matrices

Theorem (Friedman-Washington, 1989)

Suppose the coefficients of My y are independent Haar distributed
random variables in Zp. As N — oo, we get a limiting probability
distribution on finite abelian p-groups that satisfies

1
P(G) = @)
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Random Abelian Groups from Random Matrices

Theorem (Friedman-Washington, 1989)

Suppose the coefficients of My y are independent Haar distributed
random variables in Zp. As N — oo, we get a limiting probability
distribution on finite abelian p-groups that satisfies

1

P(C) > Zute)

Theorem (Maples, 2013; Wood, 2015)

Suppose the coefficients of My n are non-degenerate identically
distributed random variables °. Then the same conclusion holds.

aDegenerate: constant modulo p
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[llustration

Example (A Bernoulli random matrix - "White Noise”)

ooo0oo011 11111
o111111 1001
o111 011001 1
o1too0oo0o111110
11110001010
1000O0O0O0OO0T1TT1 1
10010100101
10110000100
10101001110
000O0O0OT1TT1TO0OO0OT"11
1111000100 1
Entries are 0 or 1 with probability 1/2.
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Cokernels of Corners
My | M2 | M3 | M4 | M5
Moy Mo | Mo3 | Moy | Mos

M3y Mgz M3z | M3q | M35

Mg Map M43 Myyg | Mys
Msy Msp Msz Msg  Mss

Definition

Denote by M,*,f";’,af the top left n x n corner of a large (or infinite)
matrix whose entries are independent, Haar random variables.

Hence,
coker(M}aar)

is a random process on finite abelian p-groups.
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Markov Chain

Theorem (Van Peski, L.)

coker(M}aar)

is a Markov chain.

7./27.
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Markov Chain

Theorem (Van Peski, L.)

coker(Mpaar)

is a Markov chain.
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Markov Chain

Theorem (Van Peski, L.)

coker(M}aar)

is a Markov chain.

7./27. x T.J27. x T./]27 x 7./]27Z.
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Markov Chain
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Markov Chain

Theorem (Van Peski, L.)

coker(M}aar)

is a Markov chain.

7./27. x 1./]27, x 7./]27.

A random walk on p-groups October 6, 2024



Markov Chain

Theorem (Van Peski, L.)

coker(M}aar)

is a Markov chain.

7./27. x 1./]27, x 7./]27.

N. Lvov A random walk on p-groups October 6, 2024 20/1



Markov Chain

Theorem (Van Peski, L.)

coker(M}aar)

is a Markov chain.

7./27, x 7.]4Z

N. Lvov A random walk on p-groups October 6, 2024 AN



Markov Chain

Theorem (Van Peski, L.)

coker(M}aar)

is a Markov chain.

7./27, x 7.]4Z

N. Lvov A random walk on p-groups October 6, 2024 22/1



Markov Chain

Theorem (Van Peski, L.)

coker(M}aar)

is a Markov chain.

7./27.

N. Lvov A random walk on p-groups October 6, 2024 23/1



Markov Chain
Theorem (Van Peski, L.)

coker(Mpaar)

is a Markov chain.

7./27.

coke I'( M ﬁ’%rnoulli

is “asymptotically” a Markov chain.
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Definitions; Description of Markov Chain

Definition
* X, denotes the set of finite abelian p-groups G.
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Definitions; Description of Markov Chain

Definition
* Xp denotes the set of finite abelian p-groups G.

e X; denotes the set of abelian p-groups H such that
H g Htors X Zp.

Two Random Operators

° d: Xy — Xp:

take quotient by random element
° d*: Xp — Xj:

pick random element of Ext(-,Zp)?

“For G finite, Ext(G, Zp) is dual to G.
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Connection with Random Matrices

d(coker(Mn7n+1)) - My

(Quotient by a random element)
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Connection with Random Matrices

d(coker(M,mH )) - My

(Quotient by a random element)

d* (coker(Mnn)) = | My,

(Random Zp-extension)

dd* coker(My,n) ) = M.

*
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Time-Reversible Markov Chains

Definition

Given a Markov Chain at equilibrium, time-reversal gives another

Markov chain:
P(B)P(B — A)

P(A)

P*(A— B) =
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Markov chain:
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P(A)

P*(A— B) =

Definition
A Markov chain is time-reversible if

P(A)P(A — B) = P(B)P(B — A) (1.1)
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Time-Reversible Markov Chains

Definition

Given a Markov Chain at equilibrium, time-reversal gives another
Markov chain:
P(B)P(B — A)

IP(A)

P*(A— B) =

Definition
A Markov chain is time-reversible if

P(A)P(A — B) = P(B)P(B — A) (1.1)

Reminder

Any time-reversible Markov chain can be represented as a symmetric
random walk on a weighted graph.
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(d,d*) is Time-Reversible

For any GLy.1(Zp)-invariant measure Mp p.1,

Mn,n+1 Mn n+1

~ coker b

00 0 1 * % x %

coker
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(d,d*) is Time-Reversible

For any GLy.1(Zp)-invariant measure Mp p.1,

Mn,n+1 Mn,n+1

coker ~ coker

Corollary
(d*, d) is a time-reversible Markov chain.

( coker(Mféar

coker(Mpaar ) = H) ~

((coker(Mmpar, 1) | coker(Mpfear,) = H)
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Interpretation as a Random Walk

The weighted graph I

(d%,d)
is a random walk on a bipartite weighted graph I with:
e Vertices labeled by G or H.
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Interpretation as a Random Walk

The weighted graph I

(d%,d)
is a random walk on a bipartite weighted graph I with:

e Vertices labeled by G or H.
e Edges:

0—-+%Zp—+H—-G—0

e Weights:
1

|Aut(Zp — H — G)||G|

We get dd* by taking two random steps on this weighted graph.
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The Spectrum of I
The spectrum of T can be deduced from the spectrum of dd*. \
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The Spectrum of I
The spectrum of T can be deduced from the spectrum of dd*.

The spectrum of dd* is the closure of
el
|Gl

There exists an explicit unitary operator U such that:

U 'dd*u = |1|
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The Unitary Operator U

Theorem (Van Peski, L.)

There exists a unitary operator U such that:
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The Unitary Operator U

Theorem (Van Peski, L.)

There exists a unitary operator U such that:

|Sur(F, )\ |Sur( -, F)|
u (Sac) =va (S )
U may not be surjective, but...

im() = im(dd*)
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The Unitary Operator ¢/, cont'd

Theorem (Van Peski, L.)

Z |Sur(G, F1)||Sur(G, F)| _
|Aut(G)| -

Z ISUf (F1, G)[|Sur(F2, G)|

Aut(G)| vFi, P
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The Unitary Operator ¢/, cont'd

Theorem (Van Peski, L.)

Z |Sur(G, F1)||Sur(G, F2)|
|Aut(G)| -

Z ISUf (F1, G)[|Sur(F2, G)|

Aut(G)| vF,

Substituting F, = 0 yields the well-known identity:

|SUI'GF1 .
OZ Aut(G =1 VF.
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Thank you!



Eigenfunctions

e To every F € Xy, we can associate an eigenfunction of dd*:
Yy 0

Er <L U(1F)
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Eigenfunctions

e To every F € Xy, we can associate an eigenfunction of dd*:
0

Er <L U(1F)

e The eigenvalue of Eg is |F|~".
® We can calculate Er explicitly.
e The Er are independent and they span a dense subset of

ker(dd*)* = im(dd*).
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Proof of First Main Theorem

Definition

MUF) 2 (- Sur - )| = el )

N. Lvov A random walk on p-groups October 6, 2024 36/1



Proof of First Main Theorem

def _ISur(-, F)|
M(F)—#O(')‘Sur('aF)’—%W |
Lemma (Main Lemma)
]
dd* (M(F)) =1 Hom(; F)M(coker(Zp — F))
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Proof of First Main Theorem (cont'd)

_ 1
|F

dd*U(1F) U(E)
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Proof of First Main Theorem (cont'd)

. 1
dd*U(1F) = |T_—’U(1F)
dd*M(F) = |F| M(F) + lower order terms ...

with respect to the partial ordering, where F' < Fiff F'is a
quotient of F.
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Proof of First Main Theorem (cont'd)

da*U(1F) = |1HU(1F)

dd*M(F) = |T—'|M( ) + lower order terms ..

=

dd*"U(1r) = —=U(1F) + lower order terms ...

IFl
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Proof of First Main Theorem (cont'd)

da*U(1F) = |1HU(1F)

dd*M(F) = |T—'|M( ) + lower order terms ..

=

dd*"U(1r) = —=U(1F) + lower order terms ...

IF]
=

ddU(TF) = —U(1F)

|Fl
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Proof of Second Main Theorem

The orthogonal complement of the Er in L?(Xy, o) is
ker(dd*) N LZ(X(), ,uo).
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Proof of Second Main Theorem

The orthogonal complement of the Er in L?(Xy, o) is
ker(dd*) N LZ(XO, ,uo).

We compute the asymptotics of (dd*)N(v) where v is finitely
supported. O

.
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Proof of Second Main Theorem

Theorem

The orthogonal complement of the Er in L?(Xy, o) is
ker(dd*) N LZ(XO, ,uo).

Proof.

We compute the asymptotics of (dd*)N(v) where v is finitely
supported. O

| A\,

The dominant term of (dd*)N(v) is a linear combination of the M(F)’s.
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"Application”

For all G,
|Aut(G x Z/pZ)|

[Aut(G)|
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"Application”

For all G,
|Aut(G x Z/pZ)|

[Aut(G)|

= :,(\Hom(G x 1./ pZ, L] pZ x 7] pZ)| — |Hom(G x Z/pZ,Z/pZZ)y)
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Thank you!



