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Abstract
We consider the corners process for an i.i.d. matrix. When the distri-

bution of the entries is uniform, this process is a Markov chain, and hence
the ergodic theorem for Markov chains can be applied. This implies, in
particular, that for uniformly distributed p-adic random matrices, the
cokernels of the corners are distributed according to the Cohen-Lenstra
measure, almost surely. The purpose of this note is to show that the con-
clusion of the ergodic theorem also holds for i.i.d matrices, provided that
the distribution of the entries is not concentrated on the translate of a
subring, or the translate of an ideal.

1 Introduction
First, let Un,m be an n × m matrix over Zp, whose entries are sampled
uniformly at random. A theorem of Friedman and Washington describes
the asymptotic distribution of coker(Un,n):
Theorem. [FW89, Proposition 1]

lim
n→∞

IP
(

coker(Un,n) ∼= A
)

= c0

|Aut(A)| (1.1)

where

c0 =
∞∏

i=1

(
1 − 1

pi

)
The distribution (1.1) on p-groups is known as the Cohen-Lenstra dis-

tribution [CL84]. More generally,

lim
n→∞

IP
(

coker(Un,n+u) ∼= A
)

= cu

|A|u|Aut(A)| for u ≥ 0 (1.2)

where

cu =
∞∏

i=u+1

(
1 − 1

pi

)
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From the recent work of Sawin and Wood [SW24, Lemma 6.7 and Lemma
6.6], we can deduce a formula valid for any finite local ring R. We consider
an n×(n+u) matrix over R, whose entries are independent and uniformly
distributed. We again denote this matrix as Un,n+u. Now, [SW24, Lemma
6.7] implies that for u > 0, and any finite local ring R,

lim
n→∞

IP(coker(Un,n+u) = A) =

= 1
|A|u|Aut(A)|

∞∏
i=d(A)+u+1

(
1 − 1

qi

)
(1.3)

where q is the cardinality the residue field of R. d(A) is defined to be the
difference between the number of relations and the number of elements in
the minimal presentation of A, negative if there are more relations than
elements1. We denote the measure on the right hand side of (1.3) as µu.µu

The expressions (1.1) and (1.2) can both be deduced from (1.3).

Ergodic averages in the uniform case. We slightly refine the
above set-up. U will denote an infinite random matrix over Zp, whose
entries are sampled uniformly and independently at random. Denote by
Un,m the top left n × m corner of U .

From [Lvoa], it follows that the random groups coker(Un,n+u) form a re-
current Markov chain. In [Lvoa], we denote the generator of this Markov
chain as ∆u; by (1.3) , the stationary measure of this Markov chain is µu.∆u

From the ergodic theorem for Markov chains, it follows that:

1
N

N∑
i=1

1(coker(Ui,i+u)=A)
N→∞−−−−→ µu(A) a.s. (1.4)

1.1 Random matrices with i.i.d. entries that are
not necessarily uniformly distributed.
Let M be an infinite random matrix over R whose entries are i.i.d. random
variables, subject to the condition that their distribution is not supported
on the translate of a subring of R or the translate of an ideal.

Let Mn,m denote the top left n × m corner of M. The next theoremMn,m

states that the asymptotic distribution of coker(Mn,n+u) is the same as
the asymptotic distribution of coker(Un,n+u). This is an example of uni-
versality.

1For example, d(R3) = 3.
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Theorem. [Lvob] The equality (1.3) continues to hold when Un,n+u is
replaced by Mn,n+u.

Remark. For R ∼= Z/pNZ, this theorem appeared in the work of Maples
and Wood, [Map13] [Woo19], with stronger results proven by Nguyen
and Wood [NW21]. When R is the quotient of a DVR, this is proven
by Yan, under a slightly different assumption on the distribution of the
entries [Yan23].

The main result: universality for ergodic averages. In this
note, we prove another manifestation of universality; we show that (1.4)
also holds when Un,n+u is replaced by Mn,n+u.
Theorem 1.1. Let Mi,i+u be the top left i × i + u corner of M, where
M is the infinite random matrix defined above. Then,

1
N

N∑
i=1

1(coker(Mi,i+u)=A)
N→∞−−−−→ µu(A) a.s. (1.5)

We deduce this from [Lvoa] and [Lvob]. Indeed, as mentioned previ-
ously, [Lvoa] implies that

. . . , coker(Ui,i+u) , coker(Ui+1,i+u+1) , . . .

is a Markov chain generated by a certain operator, ∆u, while [Lvob] im-
plies that the process

. . . , coker(Mi,i+u) , coker(Mi+1,i+u+1) , . . . (1.6)

is "approximately" a Markov chain generated by ∆u, in a certain quanti-
tative sense. This allows us to deduce (1.5) from the ergodic theorem for
Markov chains.

2 The corner process is approximately a
Markov chain
We use the symbol "∗" to denote independent uniformly random vari-
ables. Let T denote the group of upper triangular matrices with 1’s on
the diagonal, and denote by t the map

t : Mat → T \Mat /T

that takes a matrix to its orbit under the action of T × T . Finally, denote
by dT V the total variation distance. The inequality [Lvob, (2.5)] implies
that

dT V

t


∗

Mn,n+u

...
∗

∗ . . . ∗ ∗

 , t

[
Mn+1,n+u+1

] < O(θn)
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where θ < 1 is an explicit constant (defined in [Lvob, Theorem 2.2]), thatθ
depends only on the distribution of the entries of M and on the cardinality
of the residue field of R.
Lemma 2.1. The total variation distance between(

. . . , coker(Mi,i+u) , . . . , coker(Mn,n+u) , coker(Mn+1,n+u+1)
)

and(
. . . , coker(Mi,i+u) , . . . , coker(Mn,n+u) , ∆ucoker(Mn,n+u)

)
is bounded above by O(θn).
Definition. Denote by Xn the following process, indexed by i ∈ N:(

. . . , coker(Mi,i+u) , . . . , coker(Mn,n+u) ,

∆ucoker(Mn,n+u) , . . . , ∆i−n
u coker(Mn,n+u) , . . .

)
Corollary. (of Lemma 2.1)

dT V (Xn, Xn+1) < O(θn) (2.1)

Theorem 2.2. Xn converges to X∞ in total variation. More precisely:

dT V (Xn, X∞) < O(θn) (2.2)

Proof. (2.1) implies that for any k,

dT V (Xn, Xn+k) < O(θn)

where the implicit constant is different from the one in (2.1). Hence, Xn

is a Cauchy sequence in the total variation topology.

Now, the space of probability measures, endowed with the total varia-
tion topology, is complete. Therefore, there exits Y such that

dT V (Xn, Y ) ≤ O(θn)

For any k, the pushforward of the distribution of Y to the first k coor-
dinates must coincide with the pushforward of the distribution of X∞ to
the first k coordinates. As this is true for any k, X∞ must have the same
distribution as Y .

2.1 Corollaries
Corollary. The asymptotic distribution of coker(Mi,i+u) is µu.

Proof. In the limit i → ∞, the distribution of (Xn)i converges to µu

in total variation, because ∆u generates a recurrent Markov chain. By
Theorem 2.2,

dT V

(
(Xn)i, (X∞)i

)
< O(θn)
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We take the limsup as i → ∞ to get:

lim sup
i→∞

dT V

(
µ0 , (X∞)i

)
< O(θn)

and then take the limit as n → ∞. This shows that the distribution of
(X∞)i must also converge to µu. This proves the corollary.

Remark. The statement of the corollary was previously demonstrated in
[Lvob], with an explicit convergence rate. The result is proven again here,
in order to show that it can be deduced from a dynamic perspective.

The next corollary is the main result of this note.
Corollary (Theorem 1.1).

1
N

N∑
i=1

1(coker(Mi,i+u)=A)
N→∞−−−−→ µu(A) a.s. (2.3)

Proof. By the ergodic theorem for Markov chains, for any n,

IP

(
1
N

N∑
i=1

1((Xn)i=A)
N→∞−−−−→ µu(A)

)
= 1

Hence, by (2.2),

IP

(
1
N

N∑
i=1

1((X∞)i=A)
N→∞−−−−→ µu(A)

)
≥ 1 − O(θn)

Taking n → ∞ proves (2.3).
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