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Abstract

Recent work of the author investigates certain random processes, val-
ued in abelian p-groups, that naturally arise in the study of Haar random
matrices over Z,. Non-trivially, it was found that these processes are re-
versible Markov chains. In this short note, we give a simple alternative
derivation of this fact. The new derivation also proves that this phe-
nomenon is not specific to Z,, but generalizes to Haar random matrices
over any profinite local ring.

1 Introduction

Perhaps, the first and simplest instance of a Markov chain appearing in the
study of random matrices, is the evolution of the corank of the principal minors
of a large random matrix over a finite field.

Random matrices over finite fields Let k be a finite field. Consider an
infinite matrix M, whose entries are indexed by N x N and are independent
uniformly distributed random variables in k. Let M,, ,, be the top-left n x n
corner of M. Then

corank(My, ) (1.1)

is a random process valued in N. Using standard arguments in linear algebra,
one can deduce the following interesting features of this process:

o (1.1) is a Markov chain, i.e. a random walk on N (with certain explicit
transition propabilities, that depend on the cardinality of k.)

e This Markov chain is recurrent, and hence converges to its unique station-
ary distribution.

Finally, we remark that this Markov chain is also reversible, for trivial rea-
sons, since every Markov chain on N is reversible.
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Random matrices over Z, A non-trivial generalization of the above facts
to matrices over Z, was studied in [Lvo24].

Theorem. [Lvo24] Theorem 1.1]
coker (Haarn,n(Zp)) (1.2)

is a reversible Markov chain on abelian p-groups.

Remark. The process (|1.2)) is a direct generalization of the process (|1.1). Indeed,
the cokernel is a direct generalization of the corank, as for a matrix M over a
finite field k,

coker(M) = feorank(M)

In fact, in [Lvo24, Theorem 1.1], we describe the generator of this Markov
chain explicitly. In its most elementary form, the Markov chain (|1.2)) is gener-
ated by the following operation:

(A) Given an abelian p-group G, mod out by a uniformly random element of

G.
(B) Take the product of ZPH
(C) Finally, mod out by a Haar random element of this product.

Futhermore, in [Lvo24, Lemma 2.3] we construct an explicit weighted graph
I', such that the Markov chain is realized as a symmetric random walk on
I'. Finally, the last chapter of [Lvo24, Section 3|, together with [LP], gives a
complete explicit solution to the spectral problem for this Markov chain.

Main results of this paper: random matrices over pro-finite local rings
and a unified approach The theorem [Lvo24, Theorem 1.1] is unsatisfactory
in two respects:

e It is not a priori clear why the Markov property and the reversibility
property hold.

— There are related Markov chains that arise in the study of symmetric
and anti-symmetric matrices over Z,. These Markov chains are also
turn out to reversible. In each case, this is shown by a computation.
However, the seeming ubiquity of this phenomenon begs for a unified
approach.

e We can ask what happens for higher-dimensional rings. The approach
of [Lvo24] does not directly generalize to this case.

ISteps (A) and (B) together are equivalent to the following single step - pick a uniformly
random extension of G by Zp. The equivalence is a consequence of |[Lvo24, Lemma 1.3].



— Aside from intrinsic interest, such a gneralization would be desir-
able, as 2-dimensional rings (e.g. Z,[x]) arise even in the study of p-
adic random matrices. For example, to understand the characterstic
polynomial of a p-adic matrix M, one is led to consider det(M — Iz),
which is most naturally understood through coker(M — Ix), the cok-
ernel of a random matrix over Z, [m]ﬂ

In this paper we prove the following theorem.

Theorem 1.1. Let R be a finite or profinite local ring. Then coker(Haary, n4vu(R))
s a reversible Markov chain, for any u € Z.

Remark. In fact, we prove more. The random variable coker(Haar, n(R)) is
a "two-dimensional" Markov chain, governed by a certain family of transition
operators. We refer to §f] for more details.

Remark. By itself, the Markov property is not surprising, and can be deduced
from the following two facts:

e Suppose that a module is defined as a set of generators satisfying linear
relations. Adding another Haar random relation has the effect of modding
out by a Haar random element of this module.

e The module coker(M) is uniquely determined by coker(M7T) and the di-
mensions of M.

Indeed, the first fact tells us what happens to the cokernel when we add a Haar
random column vector to a matrix. The second fact shows that this infomation
is sufficient to determine what happens when we add a Haar random row vector.

However, the approach in this paper can be generalized to prove the Markov
property, as well as reversibility, for symmetric matrices over R. In this situa-
tion, the origin of the Markov property is a priori much less evident.

Remark. In this paper, contrary to |[Lvo24], the generator of the Markov chain
is not described explicitly. Rather, the Markov property is deduced from invari-
ance properties of the Haar measure, as we briefly elaborate below.

1.1 Approach

Here, we say a few words about our approach. We will define an equivalence
relation on matrices over R, not necessarily square, of arbitrary dimension:

My ~ M,

if and only if there exist n and m such that:

20f course, this matrix is not Haar random, but many classes of random matrices can
be proven to behave asymptotically in the same way as Haar random matrices. This is the
universality phenomenon, that is discussed in particular in [Wo023| Section 3].



[]\gl HO }QT{A? JIO }9' for some g, 9" € GL(R)  (1.3)

This equivalence relation has the property that two matrices are equivalent if
and only if they have the same cokernel and the difference between the number
of columns and the number of rows is the same for both matrices.

However, the equivalence relation turns out to be more convenient to work
with, without any reference to the cokernel. Indeed, it follows almost immedi-
ately from the invariance properties of the Haar measure that

Haary nyu(R)

induces a reversible Markov chain on equivalence classes of matrices, under the

equivalence relation (1.3). [Theorem 1.1|can then be deduced as a corollary.

There are two other reasons why it is preferable to work with equivalence
classes of matrices rather than the modules that parametrize them.

— This point of view will add flexibility, as we can mildly modify the
equivalence relation. Indeed, although we do not elaborate on this in
the present paper, all the results go through if we consider a weaker
equivalence relation than , namely if we replace the group GL(R)
by SL(R).

— Most importantly, the point of view also has the potential of readily
generalizing to the study of matrices with symmetry, such as sym-
metric, anti-symmetric, or Hermitian matrices. In these cases, the
equivalence classes are not parametrized by modules, but by modules
with extra information. Rather than pin down this extra informa-
tion, it seems more convenient to work with the equivalence classes
directly.

We will write ¢(M) to denote the equivalence class of M.

1.2 Outline

In we make some remarks on the equivalence relation . In §3| we
show that the equivalence class, to which a matrix M belongs, is determined by
coker(M) and by the difference between the number of rows and the number
of columns of M. In we show that the process induced by Haar, 4, on
equivalence classes is a Markov chain. In we show that this Markov chain
is recurrent. This is done by reducing to the finite field case. We also draw a
connection to the recent work of Sawin and Wood, [SW24]. In §6 we define
other transition operators, and show that a certain Markov chain is reversible.
These results will imply that the process coker(Haary »+.,) is also a reversible
Markov chain. In §7} we comment on the relation of the transition operators
defined in [Lvo24] to the transition operators defined in this paper. Lastly, in
§8] we discuss what happens when we change the ring R.



1.3 Previous work

The finite field case appears in many papers and it is difficult to find a precise
attribution. The Z, case was studied by Roger Van Peski, who computed,
in particular, the joint distribution of coker(Haar, n) and coker(Haar, nir)
in [VP21, Theorem 1.3, part 2].

1.4 Acknowledgements

The general proof of reversibility was inspired by a fruitful e-mail exchange with
Roger Van Peski.

2 The equivalence classes

(R, m) is a complete local ring with a finite residue field. G def GL(R).

We recall that, in we have defined an equivalence relation, where M; ~
My if and only if there exist n and m such that:

e e

/
0 L, 0 L. for some ¢g,9° € GL

Definition. For u € Z, C, is the set of equivalence classes of matrices such that
#cols — #Hrows = u

Recall that, given a matrix M, we denote by c(M) the equivalence class to
which M belongs.

Remark. C, has a distinguished element, i.e. the equivalence class of

1

[1]0r[0}0r[1 0]

We will denote this equivalence class as O, (R).

Lemma 2.1. A matriz M over R belongs to the equivalence class Oy (R) if and
only if M mod m belongs to O, (k).

Proof. A square matrix over R is invertible if and only if its reduction mod m
is invertible. can be deduced from this fact using row and column
operations. O

3 The cokernel map

Theorem 3.1. The map

coker

C, — R —mod

1s well-defined and injective



Proof. Tt follows from the definition of the equivalence relation that the map
is well-defined. The injectivity follows from the uniqueness of minimal free
resolutions of modules over local rings, [Eis95, Theorem 20.2]. O

Lemma 3.2. coker(O,(R)) = RI*! ifu < 0 and coker(Oy(R)) is trivial if u > 0.
Proof. This follows from the definition of O, (R). O

4 A random operator and a Markov chain on C,

First, we specify what we mean by a random operator from a set X to a set Y.
Definition. A random operator from X to Y is a linear operator from measures
on X to measures on Y, that sends probability measure to probability measures.
Remark. The pro-finite ring R is equipped with a canonical measure, alterna-
tively called the uniform measure, or the additive Haar measure.
Definition. We say an R-valued random variable is Haar random if it is dis-
tributed according to the Haar measure on R.

In this section, we will write * to denote a Haar random entry in a matrix. If
* appears more than once, the corresponding entries will be independent Haar
random variables.

Consider the random operator from Mat(R) to Mat(R), defined as

(4.1)

Theorem 4.1. defines a random operator from C, to Cy, for all u.

Proof of We will prove by proving
and Together, these will imply We will write

My ~ M (4.2)

to denote that M7 and M are in the same class in C,,. If M7 and M5 are random
matrices, (4.2)) will mean that the two matrices induce the same distribution on
Cu-

Lemma 4.2.

_ Y ) =
M 0 M 0 |:
*
0 I 2 0 I |o
%
| * * | % S EN L * * 0 *




Proof. Tt suffices to prove

* 0
I o I :
* 0
* * ‘ * 0 0 ‘ *
Observe that
I v I 0
wl ‘ c 0 c—wly

Now suppose that ¢, v and w are independent and Haar random. In particular
¢ is Haar random and independent of w’'v.

Claim. The sum of two independent random variables is Haar random if one
of them is Haar random.

The claim is a consequence of the fact the Haar distribution is invariant by

translations. It follows that ¢ — w”v is Haar random. This proves [Lemma, 4.2
O
Lemma 4.3.
* *
gTMg' o M
* *
Proof. 1t suffices to show:
* 01" * 0
gTMg' | g M g :
* 0 * 0
* * | 0 ... 0]1 * . x|k 0 ... 0]1

But this follows from the GL,, (R)-invariance of the Haar measure on R"™, for
any n. This proves|Lemma 4.2 and |[heorem 4.1| O




Definition. We denote by A, the random operator induced by (4.1)) on C,.

coker (Haarn7n+u) is a Markov chain. We give a corollary of [Theorem 4.1

Definition. Recall that Haar be an infinite matrix, whose entries are indexed
by N x N, with Haar random variables. Recall also that Haary, ;. denotes the
top-left n X n 4+ w minor.

Corollary 4.3.1. The random process coker (HaarnﬂHu) is a Markov chain,
generated by the operator A,,.

5 Positive recurrence of the Markov chain coker (H aarn,nﬂ)

Theorem 5.1. The Markov chain c(Haar, n+y) is positive recurrent. Equiva-
lently, the Markov chain
coker(Haary, 54v)

1S positive recurrent.
We prove this by reducing to a question over the finite field k.
Lemma 5.2. O, (k) is a positive recurrent state for the Markov chain
c(Haary piu ® k)
Proof. We prove using two standard computations over finite fields:

o« Ifu>0
P(Haar, n+u(k) € Oy (k) =

n+u
1
IP(dimycolumnspace(Haary nyu @ k) =) = ] (1 - W)
i=u+1

o« Ifu<O
P(Haar, ptu(k) € Oy (k) =

- 1
IP(dimyrowspace(Haar, niy @ k) =1) = H (1 - k|l)
i=|u|+1



Hence,

i 1
le ]P(Haa'rn,n-‘ru(k) € Or(k)) = H (1 N |k’|1>
i=|u|+1

now follows from [Lemma 5.2 by [Lemma 2.1]

Corollary. The operator A, has a unique stationary measure and the distribu-

tion of ¢, (Haarn,m_u(R)) converges to this stationary measure.

We denote this measure as fi,.

Explicit form of u,(R)

Remark. From the work of Sawin and Wood, Lemma 6.6, Lemma 6.7,
it is possible to give explicit expressions for the measures p,, (R), as a measure
on modules, when v > 0. The general expression is given in Lemma
6.7]. For the statement that their measure and our measure are the same, see
the last line of the penultimate paragraph of page 48].

6 More random operators; the proof of
rem T.T]

In this section, we complete the proof of[[heorem 1.1| [Theorem 1.1|will follow by
combining |Corollary 6.3.1| with |Corollary 4.3.1|and [Theorem 3.1|in the previous
section.

Consider the random operators:

M — M and M — M : (6.1)

Theorem 6.1. The two operators in descend to random operators:
dufl,u : Cu — Cufl and du+1,u, : Cu — Cu+1a

respectively.

Proof. The proof is analogous to the proof of above. O
Definition. We can similarly define:
dyy: Co— Cr (6.2)

for any u and r in Z. If u > r, then (6.2) is defined by adding |u — r| random
rows. If u < r, (6.2) is defined by adding |u — r| random columns. If u = r,

(6.2) is the identity operator.



Identities satisfied by d, ,
Theorem 6.2. The operators d,,, satisfy the following identites:
(A) dyydys = drs whenever u <r <soru>r>s
(B) duydyu = AL
(C) dy,, is the adjoint of d, ., with respect to the measures i, and p,.

Proof. The first two properties follow immediately from the definitions. The
last property is a consequence of below. O

Another Markov Chain Given any u # r, the pair of operators

(du7’[') dr,u) (63)
defines a Markov chain on the state space:

C, UC,

Theorem 6.3. The operator defines a reversible Markov chain on C,,UC,..

By taking the square of the operator (6.3), we get the following corollary of
Theorem 6.3

Corollary 6.3.1. The operator A, defines a reversible Markov chain on C,.
We now prove Without loss of generality, suppose that

r>u.

Lemma 6.4. Suppose that M is a n X n+u random matriz, whose distribution
is invariant under the action of GLy X G Ly .. Then the total variation distance
between the distributions of:

_ § Y
0
c _ and c
Irfu
L *k *_

is bounded by o(n).
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Deduction of from First of all, observe that

elementary column operations imply that:

0
M top left
~ (n—(r—u))x(n+u)
corner of M
Ir—u

Now let G € C, and G2 € C,,. Take M to be the random matrix Haar, p4v,

conditioned on C(H aarnm+u> = (5. [Lemma 6.4{implies the following equality:

P (c(Haarn’nJrr) = Gl‘c(Haarn’nJru) = G2) =

=P (C(Haarn_(u_r)m+u) =G, ‘C(Haarn,nﬂl) = Gz) +o(n)
By the Markov property, the left hand side is
P <G2 Lo, G1>

while the right hand side is

o ,r ]P(C(Haarn+7L n+u—r) = Gl)
]P s 5
<Gl G2> IP(c(Haarnt+un) = Ga)

+o(n)
Taking the limit n — oo yields:

P(Gy 2% Gy (G) = P(Gy 2% Gy (Go)

6.1 The proof of Lemma 6.4]

As the statement is about the distribution induced on C,., we can apply an
element of GL to any matrix. This will not change the distribution induced on
C.. In particular, we can apply a Haar random element of GL,,,(R), acting
on the left.

Definition. Let G,1,(R) denote a multiplicatively Haar random element of
Thus, it suffices to bound the total variation distance between the random
matrices, of dimension (n + u) X (r — u):

T
| P~
Gniu(R) | ————| and H (6.4)
0 :
e

11



Remark. Note that the column vectors the matrix on the left of (6.4]) are the
first » — u column vectors of G.

Lemma 6.5. The distribution of the first r — u vectors of Gniy(R) is the re-
striction of the additive Haar measure to the set of all (r — u)-tuples of vectors
that have full k-rank.

Proof. First, we observe the following fact, whose proof is standard.

Lemma 6.5.1. Let N be any natural number. Every (r — w)-tuple of vectors
in RN that are k-independent, can be completed to an N-tuple of k-independent
vectors.

Proof of[Lemma 6.5|when R is finite: Suppose R is finite. Then GL,,1,(R)
is finite. Applying a uniformly random element of GL,, . (R) to

IT*’U,

produces a uniformly random element in the orbit

Irfu
GLnJrU(R)

By |Lemma 6.5.1} this is a uniformly random (r — u)-tuple of k-independent

vectors in R". Hence, we have proven 5| for finite R

Proof of[Lemma 6.5| when R is infinite: Now suppose that R is not finite.
Then we know that holds modulo any power of the maximal ideal.
Because R is profinite, it also holds that is true for R.

O

Thus, the total variation distance between the two random matrices is twice
the probability that » — v Haar random vectors over k are not independent.

Lemma 6.6. The following expression gives the probability that the rank of an
(r —w) X n+u Haar random matriz over k is less than (r-u).

rT—u 1
=11 <1_|kn+u—i+1) = o)
i=1

12



Proof. This is a standard calculation over finite fields. O

Combining [Lemma 6.6| and [Lemma 6.5| shows that the total variation dis-
tance between the random matrix distributions (6.4]) is o(n). By the discussion

preceding (6.4), we conclude

7 Relation with operators defined in |[Lvo24]

In previous work, we defined the operators:
d, d* (7.1)
as certain explicit random operators on groups. Below, we give the relation of

these operators to the ones studied in this paper.

Definition. We say a matrix over Z, is singular if there is a non-trivial relation
between the column vectors of M, and a non-trivial relation between the row
vectors of M. If a matrix is singular, then every matrix in its equivalence class
in C, is also singular.

Theorem 7.1. We have the following relations, when R = Z,:

o The restriction of d_1,9 to non-singular equivalence classes coincides with
the operator d*, defined in [Lvo2/].

o The restriction of dy,—1 to non-singular equivalence classes coincides with
the operator d, defined in [Lvo24).

e Hence, the operator Ag def do,—1d_1,0, defined above, coincides with the
operator dd*, when restricted to non-singular equivalence classes. (In
[Lvo24)], the operator dd* is also denoted by the symbol " Ay".)

Remark. The restriction to non-singular equivalences classes is not a serious
restriction for the study of Haar random matrices over Z,, as in this case, the
singular matrices are contained in a set of measure 0.

Proof. To prove [Theorem 7.1} it suffices to show that

d* (coker(M )) = coker M

for all non-singular n x n matrices M over Z, and

d(coker(M)) = coker M

*

for all non-singular n+ 1 x n matrices M over Z,. But this is shown in [Lvo24]
Theorem 1.1]. O
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8 Other comments
Remark. Any ring homomorphism R — R/I induces maps:
redr : Cy(R) — Cy(R/I) (8.1)

We will call this the reduction map. The push-forward of reduction induces
an operator from measures on Cy(R) to measures on C,(R/I). Moreover, we
can define the adjoint of reduction, with respect to the measures pu,(R) and
py(R/I). The adjoint of reduction will be a random operator:

indy : Cy(R/I) — Cy(R)
We will call this the induction operator.

Lemma 8.1. The adjoint of is explicitly given as follows. Given a matriz
M over R/1, replace every entry of M by an independent Haar random element
of its I-coset in R.

Remark 8.1. On matrices, this operator is the adjoint of reduction modulo I,
with respect to the Haar measure.

Proof. By arguments similar to those in the proof of we verify that
this induces a random operator from C,(R/I) to C,(R). The adjoint property

follows from [Remark S.11 O
Theorem 8.2. The operators defined above commute with the operators d,, ,.
Proof. The commutativity can be verified on the level of matrices. O

Corollary. The image of ind; is a subspace of the space of signed measures on
C. (R) that is fized by the operators d. .. The kernel of redy is also a subspace
of the space of signed measures on C.(R) that is fized by the operators d. ..
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