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Abstract
In this note, motivated by random matrix theory, we study measures

on a finite R-module M , where R is a finite local ring. We show that
the vector space of these measures admits an orthogonal decomposition,
whose components are parametrized by homomorphisms from M to the
dualizing module of R. This can be regarded as a slight generalization of
the usual Fourier decomposition.

1 Introduction
We would like to slightly generalize the Fourier decomposition of measures
on finite abelian groups to the case of modules over a ring. First, we give
a rephrasing of the usual Fourier decomposition.

Denote Z/mZ as Zm. Let G be a finite Zm-module, in other words, G
is a finite abelian group that is m-torsion.
Definition. Let P(G) be the vector space of signed measures on G.

By Fourier analysis, there is an orthogonal decomposition of P(G) into
1-dimensional subspaces indexed by elements of

Hom(G,C∗) ∼= Hom(G,Zm)

. We can group these subspaces together into those parametrized by
"isomorphic" homomorphisms, i.e. those homomorphisms that differ by an
automorphism of Zm. This gives a decomposition of P(G) into orthogonal
subspaces, indexed by

χ ∈ Hom(G,Zm)
/
Z∗

m.

These subspaces, which we denote as V (χ), can be uniquely charac-
terized by the following three properties, without any reference to Fourier
analysis:
(A) The pushforward map, induced by any homomorphism in the equiv-

alence class χ, is injective on V (G, χ). Equivalently, the elements of
V (G, χ) are constant on ker(χ)-cosets.
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(B) V (G, χ) and V (G, χ′) are orthogonal unless χ = χ′.
(C) The subspaces V (G, χ) span P(G), i.e.

P(G) ∼=
⊕

χ

V (G, χ).

The present paper. In this note, M will be a finite module over a
finite local ring R. We will define and study a decomposition of P(M) that
shares similar properties to the decomposition in the previous paragraph.
Theorem 1.1. Let R be a finite local ring, let M be a finite R-module
and denote by ω the dualizing module of R. To every

χ ∈ HomR(M, ω)
/

R∗ (1.1)

we can associate a vector space V (M, χ) ∈ P(M) with the following prop-
erties:
(A) The pushforward map induced by any homomorphism in the equiva-

lence class χ, is injective on V (M, χ). In other words, the elements
of V (M, χ) are constant on ker(χ)-cosets.

(B) V (M, χ) and V (M, χ′) are orthogonal unless χ = χ′.
(C) The vector spaces V (M, χ) span P(M), i.e.

P(M) ∼=
⊕

χ

V (M, χ). (1.2)

The main practical objective of this paper is to prove Theorem 1.1
and to establish the useful inequalities (10.1) and (11.1). Theorem 1.1 is
a consequence of Corollary 8.1.1. The inequality (10.1), proven in §10, is
a straightforward consequence of the Cauchy-Schwarz inequality and the
above decomposition. Along the way, we also establish some additional
properties of the vector spaces V (M, χ).

Outline. We start by defining a decomposition of P(M) into orthogo-
nal subspaces V (M, N) where N runs through all submodules of M . This
part is purely formal. Then we show, using some basic facts in commuta-
tive algebra, that V (M, N) is non-zero if and only if N ∼= ker(χ) for some
χ of the form (1.1). The subspaces V (M, χ) are defined as V (M, ker(χ)).
In §9, we study a coarsening of the decomposition (1.2). §10 is devoted
to the inequality (10.1).

2 Preliminaries: measures on a module
Throughout, R will be a finite local ring and M will be a finite R-module.
As in the introduction, we will denote by P(M) the real vector space of
signed measures on M .

Define 〈
· , ·

〉
M

: P(M) × P(M) → R (2.1)
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to be the Euclidean inner product on P(M), regarded as R(#M).
For any submodule N of M , let P(M, N) ⊂ P(M) denote the space

of signed measures on M that are constant on N -cosets.
We make the following remarks:

• The vector space P(M, N) is isomorphic to the space of measures
on M/N , i.e.

P(M, N) ∼= P(M/N)

• If N2 ⊂ N1,
P(M, N1) ⊂ P(M, N2)

.
• We can also define a map in the opposite direction. Indeed, we can

take the adjoint of the inclusion map P(M, N1) → P(M, N2) with
respect to the inner product (2.1), to get a map that we denote as
projN1,N2 :

projN1,N2 : P(M, N2) → P(M, N1).

Properties of proj projN1,N2 can also be defined as follows: given a
measure in P(M, N2), "average out" this measure over N1. This definition
does not depend on N2 and it is defined on all of P(M). Hence we will
subsequently simply write projN1 .

We note the following properties of proj that follow from the definition
and the preceding discussion:

• The restriction of projN to P(M, N) is the identity.
• projN1 projN2 = projN1+N2 .

3 Decomposition of P(M) into orthogo-
nal subspaces
Definition. Define

V (M, N) def==
⋂

N⊂N′

N ̸=N′

ker
(

P(M, N)
projN′,N−−−−−−→ P(M, N ′)

)

Lemma 3.1. V (M, N1) and V (M, N2) are orthogonal subspaces of P(M)
for N1 ̸= N2.

Proof. Suppose ν1 ∈ V (M, N1) and ν2 ∈ V (M, N2) and N1 ̸= N2. Then
we have: 〈

ν1, ν2

〉
=

〈
projN1 ν1, ν2

〉
=

〈
projN2 projN1 ν1, ν2

〉
=

=
〈

projN1+N2 ν1, ν2

〉
=

〈
projN1+N2 ν1, projN1+N2 ν2

〉
= 0

because either ν1 or ν2 lies in the kernel of projN1+N2 .
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Lemma 3.2.
P(M) =

⊕
N⊂M

V (M, N)

Proof. In order to prove the lemma, it is sufficient to show that P(M) is
spanned by the vector spaces V (M, N). We prove the lemma by induction
on #M .

Base case. For the base case, assume #M = 1. Then the statement
says that the 1-dimensional space P(0) is spanned by the 1-dimensional
space V (0, 0) ∼= P(0), which is true.

Induction step. Now suppose that M is an R-module of cardinal-
ity #M > 1 and suppose that the statement is true for all modules of
cardinality less than #M .

In particular, the statement of the lemma is true for all modules M/L,
assuming that L is not trivial. Hence we can assume:

P(M/L) =
⊕

N⊂M/L

V (M/L, N).

By the identification,

P(M/L) ∼= P(M, L)

it also follows that:

P(M, L) =
⊕

L⊂N⊂M

V (M, N). (3.1)

We conclude the proof using the following lemma, which is a direct
consequence of the definition of proj as an adjoint operator:
Lemma 3.2.1.

ker
(

P(M) projN−−−→ P(M, N)
)

is the orthogonal complement of P(M, N) in P(M).
Now it follows from the lemma that V (M, 0) is the orthogonal com-

plement in P(M) of the vector space:

span
{

P(M, N)
∣∣∣N ̸= 0

}
(3.2)

Hence every element in P(M) can be expressed as a sum of an element of
V (M, 0) and an element of (3.2). But, by (3.1), every element in (3.2) lies
in the span of the vector spaces V (M, N). Hence P(M) is also spanned
by the vector spaces V (M, N).

Other properties of V (M, N) We list some other properties of the
vector spaces V (M, N):

• V (M, N) is the subspace of P(M, N) that is orthogonal to P(M, N ′)
for all N ′ that strictly contain N .

• V (M, N) ∼= V (M/N, 0).
• The vector spaces V (M, N) and P(M, N) are invariant under trans-

lation by any element of M .
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4 Fourier modules
In general, many of the vector spaces V (M, N) are trivial. We are inter-
ested in identifying the non-trivial V (M, N). As V (M, N) ∼= V (M/N, 0),
this amounts to describing those modules L for which V (L, 0) ̸= 0.
Definition. We say that a module L is Fourier if V (L, 0) is not 0.

Hence,
P(M) =

⊕
N⊂M

M/N is Fourier

V (M, N) (4.1)

We will wish to describe all Fourier modules over R.
Lemma 4.1. If L is Fourier, and L′ is a sub-module of L, then L′ is
Fourier.

Proof. Indeed, suppose that L is Fourier and suppose that L′ is a sub-
module of L.
Claim. There exists a non-zero element ν ∈ V (L, 0) such that the re-
striction of ν to L′,

ν|L′ ,

is non-zero.

Indeed, V (L, 0) contains a non-zero element because L is Fourier.
Because V (L, 0) is translation invariant, we can translate this ele-
ment so that its restriction to L′ is non-zero.

But ν lies in ker(projN ) for all N . In particular, ν lies in ker(projN )
for all N ⊂ L′. It follows that ν|L′ is a non-zero element of V (L′, 0).
Therefore, L′ is Fourier.

Lemma 4.2. If a module L has a unique non-zero minimal submodule,
then L is Fourier.

Proof. Denote the minimal non-zero submodule as N0. There exist ele-
ments of P(L) that are not constant on N0-cosets. Therefore P(M) is
not contained in P(L, N0). Therefore, because N0 is minimal, P(L) is not
contained in the span of

P(L, N) N ̸= 0 (4.2)

Therefore, the orthogonal complement of (4.2) in P(L) is non-empty.
Hence, by Lemma 3.2.1, and the definition of V ( · , · ), V (L, 0) is non-
empty and L is Fourier.

5 Fourier modules that are powers of k

Recall that k
def== R/m is the residue field of R.

Theorem 5.1. A module kn is a Fourier module if and only if n = 0 or
n = 1.
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In the rest of this section, we prove Theorem 5.1. First of all, 0 is
always a Fourier module. The rest of the theorem will be proven by
showing Lemma 5.2 and Lemma 5.3.
Lemma 5.2. V (k, 0) has dimension #k − 1. In particular k is Fourier.

Proof. We show the lemma using

P(k) ∼= V (0, 0) ⊕ V (k, 0)

and comparing dimensions. V (0, 0) ∼= P(0) has dimension 1. P(k) has
dimension #k. Therefore V (k, 0) has dimension #k − 1.

Lemma 5.3. kn is not a Fourier module over k, for any n > 1.

Proof. Let n > 1. Again we use the decomposition:

P(kn) ∼=
⊕

N⊂kn

V (kn, N)

Recall that V (kn, N) ∼= V (kn/N, 0). Comparing dimensions, we find

(#k)n = dim P(kn) =
i=n∑
i=0

#{N ⊂ kn|kn/N ∼= ki} dim V (ki, 0)

It is now sufficient to show that

(#k)n =
i=1∑
i=0

#{N ⊂ kn|kn/N ∼= ki} dim V (ki, 0) (5.1)

But (5.1) can be rewritten as:

1 + (#k − 1)#{N ⊂ kn|kn/N ∼= k}

Let #Sur(kn, k) denote the number of surjective homomorphisms from
kn to k and let #Aut(k) denote the number of automorphisms of k as an
R-module. The preceding expression becomes:

1 + (#k − 1)#Sur(kn, k)
#Aut(k) = 1 + #Sur(kn, k) = (#k)n

This concludes the proof of Theorem 5.1.

6 Fourier modules over R

Recall that R is a finite local ring with residue field k. In this section,
we will determine all Fourier modules over R. We will need the fact that
every finite local ring has a dualizing module [Eis95, Proposition 21.2].
We denote the dualizing module of R as ω.
Theorem 6.1. Every Fourier module over R is a submodule of ω.
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Proof. The zero module is Fourier. Now suppose M is a non-zero Fourier
module. By Lemma 4.1, every submodule of M must be a Fourier module.
In particular

Hom(k, M)
is a Fourier module. This module is non-zero because M is non-zero, and
it is isomorphic to kn for some n. By Theorem 5.1,

Hom(k, M) ∼= k. (6.1)

Now, for an R-module L denote Hom(L, ω) as D(L). ω is the dualizing
module, hence D( · ) is a dualizing functor. Therefore, (6.1) implies:

Hom(D(M), D(k)) ∼= k (6.2)

But D(k) ∼= k, hence (6.2) implies

D(M) ⊗ k ∼= k

It is now a consequence of Nakayama’s lemma that D(M) ∼= R/I for some
ideal I ⊂ R. Therefore,

M ∼= D(D(M)) ∼= D(R/I) ∼= Hom(R/I, ω).

Therefore M is a submodule of ω.

In the sections that follow, we denote Hom(R/I, ω) as ωI .
Remark. We have shown that every Fourier module must be a submodule
of ω. The converse is also true. Indeed, ω has a minimal non-zero sub-
module. Therefore, by Lemma 4.2, ω is Fourier, and by Lemma 4.1, all
submodules of ω are Fourier.

7 Properties of ωI

In this section, we list some standard properties of ωI :

(A) I → ωI is an inclusion-reversing bijection between submodules of ω
and submodules of R.

(B) I = ann(ωI).
(C) |ωI | = |R/I|.
(D) The inclusion R/I ↪→ Hom(ωI , ωI) is surjective.
(E) ωI is the dualizing module for the finite ring R/I.

We also prove the following lemma:
Lemma 7.1. No two distinct submodules of ω are isomorphic.

Proof. The submodules of ω are in bijection with submodules of R. Thus,
we must prove that if

ωI
∼= ωI′ ,

then I = I ′. But ωI
∼= ωI′ implies that ann(ωI) ∼= ann(ωI′ ) and hence

I = I ′.
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8 Relation with usual Fourier analysis
We can recast the decomposition of P(M) into the form (1.2), given in
the introduction.

First of all, we introduce an equivalence relation:
Definition. Suppose χ, χ′ ∈ Hom(M, ω). Then we write χ ∼ χ′ if and
only if im(χ) ∼= im(χ′).

This allows us to rewrite the decomposition (4.1) as

P(M) ∼=
⊕

χ∈Hom(M,ω)/∼

V (M, ker(χ)). (8.1)

Lemma 8.1. Suppose χ, χ′ ∈ Hom(M, ω) and χ ∼ χ′. Then there exists
r ∈ R∗ such that χ′ = rχ.
Corollary 8.1.1. Hence, we can rewrite (8.1) as:

P(M) ∼=
⊕

χ∈Hom(M,ω)/R∗

V (M, χ) (8.2)

where we write V (M, χ) to denote V (M, ker(χ)).
Proof. (of Lemma 8.1) im(χ) and im(χ) are submodules of ω. If they are
isomorphic, then by 7.A, they must be the same submodule of ω, say ωI .
Hence there exists an isomorphism σ of ωI such that χ′ = σχ. But by
7.D, the only homomorphisms from ωI to ωI are given by multiplication
by R/I. Hence, the only isomorphisms from ωI to ωI are given by mul-
tiplication by R/I

∗, or alternatively by multiplication by R∗. Therefore σ
must be of this form.
Remark. We note again that χ is an equivalence class of homomorphisms.
The number of homomorphisms in the equivalence class is determined
by im(χ). By the preceding proof, if im(χ) = ωI , then the number of
elements in the equivalence class is |R/I

∗|.

*The dimension of V (M, χ) The results in the remainder of this
section are not necessary for the sequel. We include them for complete-
ness.

First, we recall that

V (M, χ) = V (M, ker(χ)) ∼= V (M/ker(χ), 0) ∼= V (im(χ), 0)

and im(χ) is of the form ωI for some I.
Lemma 8.2.

dim V (ωI , 0) = |R/I
∗|

Proof. This can be proven by induction on |R/I|. Firstly, the statement
holds for the maximal ideal because, by Lemma 5.2,

dim V (k, 0) = #k − 1.

For the induction step, we note that

P(R/I) =
⊕

χ∈Hom(ω/I,ω)/R∗

V (ω, ker(χ))
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Hence,

dim P(R/I) =
∑

J

#{χ ∈ Hom(ωI , ω)|im(χ) = ωJ }
|R/J

∗|
dim V (ωJ , 0)

The image of ωI is either isomorphic to ωI or has cardinality strictly
smaller than ωI . Using the inductive hypothesis, we can therefore con-
clude that the sum on the right can be rewritten as:

#{Hom(ωI , ω)|im(χ) = ωI}
|R/I

∗|
dim V (ωI , 0)+ (8.3)

+
∑
J ̸=I

#{Hom(ωI , ω)|im(χ) = ωJ }

whereas the left hand side is

#ωI = #Hom(ωI , ω) =

=
∑

J

#{χ ∈ Hom(ωI , ω)|im(χ) = ωJ } (8.4)

Comparing (8.3) and (8.4), we find that we must have

dim V (ωI , 0) = |R/I
∗|

Comparison with the classical case Suppose that we have a ZpN

module G. Then, the usual Fourier decomposition decomposes P(G) into
one-dimensional components parametrized by Hom(G,C∗) ∼= Hom(G,ZpN ).
If we group together the components corresponding to homomorphsms
that have the same kernel, then we recover the decomposition (8.2):

P(G) ∼=
⊕

χ

V (G, ker(χ))

We verify that in this case, the dimension of V (G, ker(χ)) is p−1
p

im(χ),

which coincides with
∣∣∣Z∗

pm

∣∣∣, where pm is the annihilator of im(χ).

9 Isotypic Fourier components
In this section we will be interested in the space spanned by a certain
natural subset of the V (M, N). Namely, let us choose a Fourier module.
This module is necessarily of the form ωI . We are interested in explicitly
describing ⊕

N⊂M
M/N∼=ωI

V (M, N) (9.1)
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Remark. If M/N ∼= ωI , then M/N is annihilated by I. Therefore, IM ⊂
N . It follows that ⊕

N⊂M
M/N∼=ωI

V (M, N) ∈ P(M, IM).

In fact, this is all we need for the sequel. In the rest of this section, for
completeness, we give a more precise description of the vector space (9.1).

To formulate our theorem, we need some preliminary definitions:

*The spaces W (M, IM) As mentioned in the preceding paragraph,
the rest of this section is not necessary for the sequel.
Definition. Define P(M, IM) as before, as the set of measure on M that
are constant on IM -cosets. Let W (M, IM) ⊂ W (M, JM) be the space
of signed measures on P(M) such that:

• Each element of W (M, IM) is constant on IM -cosets.
• Each element of W (M, IM) lies in the orthogonal complement of

P(M, JM) for all ideals J that strictly contain I.
Lemma 9.1. W (M, IM) and W (M, I ′M) are orthogonal if I ̸= I ′.

Proof. The proof is analogous to the proof of Lemma 3.1. Define projJM

to be the operation that averages a measure on M over JM -cosets. Sup-
pose that w ∈ W (M, IM) and w′ ∈ W (M, I ′M). We have〈

w, w′
〉

=
〈

projIM w, w′
〉

=
〈

projI′M projIM w, w′
〉

=

=
〈

proj(I+I′)M w, w′
〉

=
〈

proj(I+I′)M w, proj(I+I′)M w′
〉

The last expression must be 0 unless I = I ′, by the same argument as in
the proof of Lemma 3.1.

Lemma 9.2.
P(M) ∼=

⊕
I

W (M, IM)

We now give the main theorem which relates this decomposition to
the previous one:
Theorem 9.3.

W (M, IM) ∼=
⊕

N⊂M
M/N∼=ωI

V (M, N)

First, we show the following lemma:
Lemma 9.4. If M/N ∼= ωI , then

V (M, N) ⊂ W (M, IM)

Proof. (of Lemma 9.4) By assumption, M/N ∼= ωI . I is the annihilator
of ωI . Therefore, N contains IM , but does not contain JM for any J
that strictly contains I. V (M, N) is contained in P(M, IM). It remains
to prove the following claim:
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Claim. Suppose that the ideal J strictly contains I. Then V (M, N) is
orthogonal to P(M, JM).

The claim can be deduced from the orthogonal decomposition:

P(M, JM) ∼=
⊕

JM⊂N′

V (M, N ′)

Deduction of Theorem 9.3 from Lemma 9.4 We have shown
that ⊕

N⊂M
M/N∼=ωI

V (M, N) ⊂ W (M, IM)

To prove the converse, we proceed by contradiction. Suppose that for
some I, the inclusion is strict. We take the product over all I. It follows
that ⊕

N⊂M

V (M, N) ∼= P(M)

is strictly contained in ⊕
I

W (M, IM) ∼= P(M)

This gives a contradiction.

10 An important inequality
Suppose that ν is a measure on M . Denote by νN the projection of ν on
V (M, N). Denote

|νN | def==
∣∣∣∣∣∣νN

∣∣∣∣∣∣
L1(M)

,

the L1 norm of νN . In a forthcoming article, on the universality of random
matrices over R, we will need to bound the following quantity:

1
|M/IM |

∑
N⊂M

M/N∼=ωI

|νN |

Definition. Denote by (ν mod I) the measure induced on M/IM by ν,
via push-forward.
Remark. Alternatively, recall that projIM ν is a measure in P(M, IM).
Via the isomorphism P(M, IM) ∼= P(M/IM), projIM ν defines a measure
on M/IM . This measure is precisely (ν mod I).

Define ∣∣∣∣∣∣ ·
∣∣∣∣∣∣

L2(M/IM)

def==
〈

· , ·
〉

M/IM
,

to be the usual Euclidean norm.
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Theorem 10.1. For any signed measure ν on M ,

1
|M/IM |

∑
N⊂M

M/N∼=ωI

|νN | ≤ 1√
|R/I

∗|

∣∣∣∣∣∣ν mod I

∣∣∣∣∣∣
L2(M/IM)

(10.1)

Proof. We use the Cauchy-Schwarz inequality two times. νN is contant on
N -cosets, therefore, since M/N ∼= ωI , νN must be constant on IM -cosets.
Therefore, ∣∣∣∣∣∣νN

∣∣∣∣∣∣
L1(M)

=
∣∣∣∣∣∣νN mod I

∣∣∣∣∣∣
L1(M/IM)

=

=
〈

νN mod I , sgn(νN mod I)
〉

M/IM
≤

≤
∣∣∣∣∣∣νN mod I

∣∣∣∣∣∣
L2(M/IM)

√
#M/IM

by Cauchy-Schwarz. Define

S
def== {N ⊂ M |M/N ∼= ωI}

The left hand side is
1

|M/IM |
∑
N∈S

|νN mod I| ≤ 1√
|M/IM |

∑
N∈S

∣∣∣∣∣∣νN mod I

∣∣∣∣∣∣
L2(M/IM)

≤

≤
√

#S√
|M/IM |

√∑
N∈S

∣∣∣∣∣∣νN mod I

∣∣∣∣∣∣2

L2(M/IM)
(10.2)

where the last equality follows again by Cauchy-Schwarz. Since the νN

are orthogonal, we can rewrite the preceding expression as:√
#S

|M/IM |

∣∣∣∣∣∣ ∑
N∈S

νN mod I

∣∣∣∣∣∣
L2(M/IM)

≤ (10.3)

≤
√

#S

|M/IM |

∣∣∣∣∣∣ ∑
IM∈N

νN mod I

∣∣∣∣∣∣
L2(M/IM)

=
√

#S

|M/IM |

∣∣∣∣∣∣ν mod I

∣∣∣∣∣∣
L2(M/IM)

Finally, we note that√
#S

|M/IM | ≤
√

#Sur(M, ωI)
#Hom(M, ωI)|R/I

∗|
≤ 1

|R/I
∗|

Remark. Although this does not substantially improve the bound, we
remark that ∑

N∈S

νN

is the projection of the measure ν on W (M, IM). Hence, in Theorem 10.1,
we can replace (ν mod I) by the projection of (ν mod I) onto W (M/IM, 0).
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11 A uniform bound on the L1 norm of
a Fourier component
In our forthcoming paper on universality, we will need another inequality.
Lemma 11.1. If ν is any probability measure, then∣∣∣∣∣∣νχ

∣∣∣∣∣∣
L1(M)

≤
√

|im(χ)| (11.1)

To show (11.1), we first make the following observation:
Claim.

νχ mod ker(χ)
is orthogonal to

(νχ − ν) mod ker(χ).

Proof. (of claim) This follows from the construction of νχ. Indeed, by
construction, νχ is orthogonal to (νχ −projker(χ)ν). Now, by construction
νχ = projker(χ)νχ. Therefore,

projker(χ)νχ

is orthogonal to
projker(χ)(νχ − ν)

The claim follows.

Proof. (of Lemma 11.1)∣∣∣∣∣∣νχ

∣∣∣∣∣∣
L1(M)

=
∣∣∣∣∣∣projker(χ)νχ

∣∣∣∣∣∣
L1(M)

=
∣∣∣∣∣∣νχ mod ker(χ)

∣∣∣∣∣∣
L1(M/ker(χ))

≤

≤
√

|M/ker(χ)|
∣∣∣∣∣∣νχ mod ker(χ)

∣∣∣∣∣∣
L2(M/ker(χ))

(11.2)

The last inequality follows by applying the Cauchy-Schwarz inequality.
Now the preceding claim shows that∣∣∣∣∣∣νχ mod ker(χ)

∣∣∣∣∣∣
L2(M/ker(χ))

≤
∣∣∣∣∣∣ν mod ker(χ)

∣∣∣∣∣∣
L2(M/ker(χ))

But the right hand side is the L2 norm of a probability measure, and is
therefore bounded above by 1. Hence (11.2) is bounded above by√

|M/ker(χ)| =
√

|im(χ)|.
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