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Abstract

Let R be a finite local ring. We prove a quantitative universality
statement for the cokernel of random matrices with i.i.d. entries valued
in R. Rather than use the moment method, we use the Lindeberg re-
placement technique. This approach also yields a universality result for
several invariants that are finer than the cokernel, such as the span and
the determinant.

1 Introduction
We are interested in cokernels of random matrices over finite and profinite
local rings. Firstly, we discuss the case when the entries of the matrices
are uniformly distributed and independent.

Matrices with uniformly random entries
1. First, let Un,m be an n × m matrix over Zp, whose entries are sam-

pled uniformly at random. A theorem of Friedman and Washington
describes the asymptotic distribution of coker(Un,n):
Theorem. [FW89, Proposition 1]

lim
n→∞

IP
(

coker(Un,n) ∼= A
)

= c0

|Aut(A)| (1.1)

where

c0 =
∞∏

i=1

(
1 − 1

pi

)
The distribution (1.1) on p-groups is known as the Cohen-Lenstra
distribution [CL84].
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2. The derivation that establishes [FW89, Proposition 1] can be gener-
alized to non-square matrices to give:

lim
n→∞

IP
(

coker(Un,n+u) ∼= A
)

= cu

|A|u|Aut(A)| for u ≥ 0

(1.2)
where

cu =
∞∏

i=u+1

(
1 − 1

pi

)
3. Finally, from the recent work of Sawin and Wood [SW24, Lemma 6.7

and Lemma 6.6], we can deduce a formula valid for any finite local
ring R. We consider an n × (n + u) matrix over R, whose entries
are independent and uniformly distributed. We again denote this
matrix as Un,n+u. [SW24, Lemma 6.7] implies that for u > 0, and
any finite local ring R,

lim
n→∞

IP(coker(Un,n+u) = A) =

1
|A|u|Aut(A)|

∞∏
i=d(A)+u+1

(
1 − 1

qi

)
(1.3)

where q is the cardinality the residue field of R. d(A) is defined to
be the difference between the number of relations and the number
of elements in the minimal presentation of A, negative if there are
more relations than elements1.

In fact, (1.1) and (1.2) can both be deduced from (1.3).

1.1 Universality; the results of this paper
As found in the work of Maples, Wood and Nguyen ( [Map13], [Woo19],
[NW21]), the conclusion of (1.1) continues to hold when we replace the
matrix Un,n by any i.i.d. random matrix, under the necessary condition
that the distribution of the entries is non-degenerate modulo p. This is an
instance of the general phenomenon of universality. We refer to [Woo23]
for a survey.

Henceforth, R will be a fixed finite local ring, and u will be an inte-
ger. The integer u may be negative.

In this paper, we consider a n × (n + u) random matrix Mn,n+u over
R. We assume that the entries are i.i.d. random variables. We assume
that their distribution is not concentrated on the translate of a subring,
or the translate of an ideal of R.

We prove an estimate, which we call the column-swapping estimate, (The-
orem 2.2). This estimate will immediately imply the following universality
theorem:

.
1For example, d(R3) = 3.
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Theorem 1.1. Let Mn,n+u and Un,n+u be the random matrices previ-
ously defined. We have the following asymptotic statements:
(A) For any u ∈ Z, the total variation distance between

coker(Mn,n+u) and coker(Un,n+u)

tends to 0 as n → ∞.
(B) The total variation distance between the joint distribution of

coker(Mn,n) , det(Mn,n)

and the joint distribution of

coker(Un,n) , det(Un,n)

tends to 0 as n → ∞.
(C) Both of the above statements hold if we replace the cokernel by the

span of the column vectors.
In all of the above cases, the total variation distance is bounded above

by O(θn), for any θ satisfying (2.4). The implicit constant depends on θ,
u, R and the distribution of the entries of Mn,n+u.

Statement (A) has the following corollary:
Corollary. When u ≥ 0, the asymptotic value of IP(coker(Mn,n+u)) is
given by (1.3).

Statement (B) has the following corollary:
Corollary. det(Mn,n) has the same asymptotic distribution as det(Un,n).

1.2 Method of Proof
Most current proofs of universality for random matrices, over finite and
pro-finite rings, use the moment method, which first appeared in [Woo17].
We use a different approach, the Lindeberg replacement technique of
[TV11], inspired by [Lin22]. The idea of this technique is to replace a
column vector of Mn,n+u by a uniformly random vector. Somewhat sur-
prisingly, this does not significantly alter the distribution of the cokernel
of the random matrix or the distribution of the other invariants (Theo-
rem 2.1). Replacing all the columns by independent uniformly random
vectors allows us to conclude 1.1.

Remark. In an upcoming note, we will reinterpret the "column-swapping
estimate" from a dynamical point of view - the estimate will imply that
cokernels of minors approximately form a Markov chain. We will see that
the dynamic perspective naturally allows us to prove finer universality
results, using equidistribution theorems for Markov chains.

3



1.3 Related work
The earliest papers treating universality problems for random matrices
over the p-adics were [Map13] , [Woo17] and [NW21] . In the decade that
followed their appearance, there has been a surge of results on this topic.
We again refer to [Woo23] for a survey. Nearly all of this work has been
driven by the moment method, introduced by Wood in the seminal article
on symmetric p-adic matrices [Woo17].

As noted previously, we instead use the Lindeberg replacement technique.
In the context of random matrices over the real and complex numbers,
this method was introduced by Tao and Vu in [TV11]; in the latter article,
it is used to prove universality of local eigenvalue statistics of random ma-
trices over R and C. The LRT has also been used to prove universality for
the distribution of the logarithm of the determinant of a random matrix
over R in [NV14].

For rings other than R or C, this approach seems to have been pursued
only in the case of finite fields. In particular, for symmetric matrices over
finite fields, a strategy equivalent to a replacement strategy was suggested
in an unpublished note of Maples [Map]. We also remark that although
some ideas of Tao and Vu are used in the paper [Map13], the approach
therein seems to be different.

1.3.1 Outline
In §2, we state the column-swapping estimate and derive some of its con-
sequences, such as Theorem 1.1. In §3, we prove the column-swapping
estimate, by reducing it to two inequalities, proven in [Lvoa] and [Lvob],
respectively.

2 The column-swapping estimate and its
consequences
Definition. Let ξ be a random variable on R with the same distribution
as the entries of Mn,n+u.
Definition. Let v1 be a random vector whose entries are independent and
have the same distribution as ξ.
Definition. Let v0 be a uniformly distributed random vector.
Definition. Suppose that B is a submodule of the module Rn and that v
is a random element of Rn. Then by

projBv,

we denote the sum of v and an independent uniformly distributed random
element of B.
Remark. Intuitively, we get projBv by "averaging out" v over B-cosets.
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Observe that, by the invariance of the cokernel under the action of
SL(R), the distribution of

coker

[
Mn,n+u v

]

remains invariant if we add a uniformly random element of im(Mn,n+u)
to v.

Hence, it follows that the total variation distance:

dT V

(
coker

[
Mn,n+u v1

]
, coker

[
Mn,n+u v0

])
(2.1)

is equal to the total variation distance between

coker
[

Mn,n+u projim(Mn,n+u)v1
]

and
coker

[
Mn,n+u projim(Mn,n+u)v0

]
Therefore, (2.1) is bounded by:∑

M

IP(Mn,n+u = M)dT V

(
projim(M)v1, projim(M)v0

)
(2.2)

Remark. Of course, projim(M)v0 has the same distribution as v0. There-
fore, we can replace it by v0, if we wish.

It therefore suffices to bound (2.2). The preceding discussion serves to
motivate the following theorem, which is the central result of this paper:
we first state the theorem in qualitative form:
Theorem 2.1 (Qualitative form of the column-swapping estimate). Sup-
pose that Mn,n+u is a random matrix with i.i.d. random entries, which
are sampled from a distribution that is

• not concentrated on the translate of an ideal of R,
• not concentrated on the translate of a subring of R.

Then there exists θ < 1 such that∑
M

IP(Mn,n+u = M)dT V

(
projim(M)v1, projim(M)v0

)
≤

≤ O(θn) (2.3)
where θ is a constant that depends on R, and on the distribution of the
entries of Mn,n+u.

Moreover, the same estimate continues to hold if some of the entries of
Mn,n+u are replaced by independent uniformly distributed random vari-
ables.
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Quantitative form Below, we give the quantitative form of Theo-
rem 2.1. In order to do so, we must first introduce some definitions. Let
ξ be a random variable that has the same distribution as the entries of
Mn,n+u.

Definition. Define (ξ mod m) to be the random variable that is induced
by ξ on R/m.

• Denote by
∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l2

the l2 norm of the distribution of (ξ mod m).

• Denote by
∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l∞

the l∞ norm of the distribution of (ξ
mod m).

• Let char(R/m) denote the characteristic of the field R/m.

Remark. Observe that, under the hypotheses of Theorem 2.1,

max
(∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l2

,

∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l∞

,
1

char(R/m)

)
< 1.

Theorem 2.2 (Quantitative form of the column-swapping estimate). If
θ satisfies

max
(∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l2

,

∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l∞

,
1

char(R/m)

)
< θ < 1 (2.4)

then, (2.3) holds; the proportionality constant implicit in (2.3) depends on
u, θ, R and on the smallest non-zero value of:

IP(ξ = r) , r ∈ R

Intuitive meaning of Theorem 2.1 Theorem 2.1 captures the
following intuitively plausible fact. An i.i.d. random vector should be
approximately equidistributed in the quotient of Rn by n + u other i.i.d.
random vectors, with high probability.

2.1 Corollaries of Theorem 2.2
Deduction of Theorem 1.1 Theorem 1.1 is an immediate conse-
quence of Theorem 2.2.

Proof. Indeed, by the discussion preceding Theorem 2.1, the inequality
(2.3) implies that:

dT V

(
coker

[
Mn,n+u v1

]
, coker

[
Mn,n+u v0

])
≤

≤ O(θn) (2.5)
Remark. Recall that the inequality in (2.3) remains valid if we replace
some of the entries of Mn,n+u by independent, uniformly random vari-
ables. Hence, (2.5) also remains valid.
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By the preceding remark, we can apply the inequality (2.5) iteratively
to conclude that

lim
n→∞

dT V

(
coker(Mn,n+u+1), coker(Un,n+u+1)

)
= 0 (2.6)

for any u ∈ Z.

Finer invariants To conclude (2.5), all we have used about the coker-
nel function is its invariance under the right action of SLn+u. Therefore,
(2.5) remains valid if we replace the cokernel by any other SLn+u invari-
ant, such as the span of the column vectors of Mn,n+u. In particular,

• We have

lim
n→∞

dT V

(
span(Mn,n+u), span(Un,n+u)

)
= 0

• The total variation distance between the joint distribution of

span(Mn,n) , det(Mn,n)

and the joint distribution of

span(Un,n) , det(Mn,n)

tends to 0.

Rate of convergence We observe that the rate of convergence is

(n + u)O(θn)

which may be rewritten as
O(θn)

for a slightly larger θ in the range (2.4). Once again, the implicit constant
depends only on u, R, θ and the smallest non-zero value of

IP(ξ = r) r ∈ R

This proves the rest of Theorem 1.1

Upper-Triangular Matrices We will finally observe a consequence
of Theorem 2.2 that will be useful in an upcoming note, where Theo-
rem 2.2 will be combined with a Markovian perspective to deduce other
universality results.

Definition. Define Tn to be the group of upper triangular matrices with
1’s on the diagonal and let t be the map to the double quotient

Matk,l → Tk\Matk,l/Tl

Corollary. (of Theorem 2.2)

dT V

(
t

[
Mn,n+u v1

]
, t

[
Un,n+u v0

])
≤ O(θn)
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3 Proof of the column-swapping estimate
We wish to bound

∑
M

IP(Mn,n+u = M)dT V

(
projim(M)v1, projim(M)v0

)
(3.1)

Let νi denote the distribution of vi. Note that

dT V

(
projim(M)v1, projim(M)v0

)
can be rewritten as ∣∣∣∣∣∣projim(M)(ν1 − ν0)

∣∣∣∣∣∣
l1

Hence, to prove Theorem 2.2, it suffices to bound:∑
M

IP(Mn,n+u = M)
∣∣∣∣∣∣projim(M)(ν1 − ν0)

∣∣∣∣∣∣
l1

We will now see that Theorem 2.2 can be deduced from the following
estimate:
Lemma 3.1. For any arbitrary signed measure ν on Rn, we have the
inequality: ∑

M

IP (Mn,n+u = M)
∣∣∣∣∣∣projim(M)ν

∣∣∣∣∣∣
l1

≤

≤
∑
I⊂R

O
(

(1 + ϵ)n
∣∣∣∣∣∣ν mod I

∣∣∣∣∣∣
l2

)
+ (3.2)

O

(
(1 + ϵ)n max

[∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l∞

,
1

char(R/m)

]n)
where the implied constants depend on R, u, ϵ, and the minimal non-zero
value of IP(ξ = r), for r ∈ R.

The deduction of Theorem 2.2 from Lemma 3.1 In order to
deduce Theorem 2.2, we will apply the bound in Lemma 3.1 to the case
when

ν = ν1 − ν0

First of all, note that
• The total mass of the measure ν1 − ν0 is 0:

ν1 − ν0 mod R = 0 (3.3)

• Hence, ν1 − ν0 is orthogonal to ν0.
It follows that∣∣∣∣∣∣ν mod I

∣∣∣∣∣∣
l2

=
∣∣∣∣∣∣ν1 − ν0 mod I

∣∣∣∣∣∣
l2

≤
∣∣∣∣∣∣ν1 mod I

∣∣∣∣∣∣
l2
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due to orthogonality. Since the l2 norm of a probability measure cannot
decrease under pushforward, the last line is bounded by:∣∣∣∣∣∣ν1 mod m

∣∣∣∣∣∣
l2

=
∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣n
l2

The last equality holds because ν1 is a product measure. Hence ν1 mod m
is a product measure. The norm of product measure is the product of the
norms of the factors.

The remainder of this paper is devoted to the proof of Lemma 3.1.

3.0.1 Decomposing measures on modules
We recall the decomposition of measures on finite R-modules, described
in [Lvob]. Recall that, given a signed measure ν on a finite module M,
and a submodule N ⊂ M, we denote by projN ν the average of ν over
N -cosets of M. Finally, denote by ω the dualizing module of R.
Lemma 3.2. [Lvob, Theorem 1.1 and Lemma 11.1] Given a finite R-
module M,

• Any signed measure ν on M admits a decomposition into orthogonal
components parametrized by χ ∈ Hom(M, ω)/R∗:

ν =
∑

χ

νχ

where
1. The signed measures νχ are constant on ker(χ)-cosets.
2. projN νχ = 0 over any N that is not contained in ker(χ).

• We have the upper bound:∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

≤
√

|imχ| (3.4)

Remark.
It follows from 1. and 2. and the definition of projN ν that:

projN ν =
∑

N⊂ker(χ)

νχ

A Reduction Now we will apply the preceding decomposition to the
signed measure

ν
def== ν1 − ν0

on Rn.
Lemma 3.2.1.∑

M

IP(M = Mn,n+u)
∣∣∣∣∣∣projim(M)(ν1 − ν0)

∣∣∣∣∣∣
l1

(3.5)

is bounded above by ∑
χ∈Hom(Rn,ω)/R∗

χ̸=0

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

IP(χ Mn,n+u = 0) (3.6)
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Proof. By (3.2)∣∣∣∣∣∣projim(M)ν

∣∣∣∣∣∣
l1

=
∣∣∣∣∣∣ ∑

χ∈Hom(Rn,ω)/R∗

im(M)⊂ker(χ)

νχ

∣∣∣∣∣∣
l1

(3.7)

Observe that
im(M) ∈ ker(χ) ⇔ χ M = 0

Thus, we can rewrite (3.7) as∣∣∣∣∣∣ ∑
χ∈Hom(Rn,ω)/R∗

χ M=0

νχ

∣∣∣∣∣∣
l1

≤
∑

χ∈Hom(Rn,ω)/R∗

χ M=0

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

=

∑
χ∈Hom(Rn,ω)/R∗

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

1{χ M=0}

Therefore, (3.2) is bounded above by:∑
M

IP
(

Mn,n+u = M
) ∑

χ∈Hom(Rn,ω)/R∗

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

1{χ M=0}

=
∑

χ∈Hom(Rn+u,ω)/R∗

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

IP(χ Mn,n+u = 0)

Proof of Lemma 3.1 We recall that ω is the dualizing module.
Hence, the correspondance between submodules of ω and their annihilat-
ing ideals is 1-to-1. Denote by ωI the submodule corresponding to I.

Hence, we can rewrite (3.6) as∑
I⊂R

∑
χ∈Sur(Rn,ωI )/R∗

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

IP(χ Mn,n+u = 0)

Lemma 3.1 will be proven by showing the following estimate and sum-
ming over all I.
Lemma 3.2.2. For any ideal I of R,∑

χ∈Sur(Rn,ωI )/R∗

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

IP(χ Mn,n+u = 0) ≤ (3.8)

≤ O
(

(1 + ϵ)n
∣∣∣∣∣∣ν mod I

∣∣∣∣∣∣
l2

)
+

+O

(
(1 + ϵ)n max

[∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l∞

,
1

char(R/m)

]n)
where the implied constants depend on u, ϵ, R and the distribution of ξ.

Proof. By Equation 3.4, |νχ| is bounded above by√
|ωI | =

√
|R/I|
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Hence, we can separate the sum (3.8) into two parts:√
|R/I|

∑
χ∈Sur(Rn,ωI )/R∗

max
[
IP(χ Mn,n+u = 0) −

(
1 + ϵ0

|ωI |

)n+u

, 0
]
+

+
∑

χ∈Sur(Rn,ωI )/R∗

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

(
(1 + ϵ0)

|ωI |

)n+u

It remains to estimate the two terms. Fortunately, the hard work has
already been done in [Lvoa] and [Lvob]:

Applying the bounds from [Lvoa] and [Lvob]
(A) By [Lvoa, Theorem 1.2], for any ϵ′ > 0,∑

χ∈Sur(Rn,ωI )/R∗

max
[
IP(χMn,n+u = 0) −

(
1 + ϵ0

|ωI |

)n+u

, 0
]

≤

≤ O

(
max

[
1

char(R/m) ,

∣∣∣∣∣∣ξ mod m

∣∣∣∣∣∣
l∞

]n

(1 + ϵ′)n

)
where the implied constant depends on ϵ′, R/I, u and the distribu-
tion of ξ mod I.

Moreover, this inequality remains valid if we replace some of the
entries of Mn,n+u by independent uniformly random variables.

(B) By [Lvob, Theorem 10.1],

1
|ωI |n

∑
χ∈Sur(Rn,ωI )/R∗

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

=

= 1
|ωI |n

∑
χ∈Sur(Rn,ωI )/R∗

∣∣∣∣∣∣νχ

∣∣∣∣∣∣
l1

≤ 1√
R/I

∗

∣∣∣∣∣∣ν mod I

∣∣∣∣∣∣
l2

(3.9)
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